主管:中华人民共和国司法部
主办:司法鉴定科学研究院
ISSN 1671-2072  CN 31-1863/N

中国司法鉴定 ›› 2024 ›› Issue (6): 36-43.DOI: 10.3969/j.issn.1671-2072.2024.06.004

• 鉴定综述 • 上一篇    下一篇

多模态法医病理学智能化鉴定的应用展望

黄  平   

  1. 复旦大学 法庭科学研究院,上海 200032
  • 收稿日期:2024-06-02 出版日期:2024-11-15 发布日期:2024-11-28
  • 作者简介:黄平(1979—),男,研究员,主任法医师,博士,博士研究生导师,主要从事法医病理学研究。E-mail:huangping@fudan.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(82430060);国家自然科学基金面上项目(82072115)。

The Prospects of Multimodal Artificial Intelligence Identification in Forensic Pathology

HUANG Ping   

  1. Institute of Forensic Science, Fudan University, Shanghai 200032, China
  • Received:2024-06-02 Published:2024-11-15 Online:2024-11-28

摘要: 传统法医病理学鉴定主要依赖于现场勘查、案情分析、尸体解剖和组织病理学检验等方法,这一过程高度依赖鉴定人的个人经验和主观判断。历经数百年的鉴定实践,该模式一直是法医病理学领域的基石。然而,随着人工智能(artifical intelligence,AI)技术的突飞猛进,特别是生成式AI技术的兴起,AI在法医病理学中的应用已经实现了从单一模态数据分析到多模态数据综合处理的转变条件。深入探讨了多模态AI技术及其数据融合策略在法医病理学鉴定中的应用展望,尤其是潜在应用场景和发展前景。同时,还审视了多模态AI技术在法医病理鉴定实践中可能遇到的挑战和伦理问题,并对如何克服这些“瓶颈”问题提出了见解。

关键词: 法医病理学, 人工智能, 多模态, 数据融合

Abstract: Traditional forensic pathological identification has primarily relied on methods such as on-site inspections, case analysis, autopsies, and histopathological examinations, all of which highly depend on the personal experience and subjective judgement of the examiners. After centuries of practice, this mode of identification has been the cornerstone of the forensic pathology. However, with the rapid advancement of artificial intelligence (AI) technologies, particularly the emergence of generative AI technologies, the application of AI in forensic pathology  has evolved from analyzing single-modal data to processing multimodal data. This paper aims to delve into multimodal AI technologies and their data integration strategies in forensic pathological identification, especially the potential application scenarios and developmental prospects in forensic pathological identification. Additionally, this paper discusses the challenges and ethical issues that might arise with the implementation of multimodal AI technologies in forensic pathological identification practice and offers insights on how to overcome these obstacles.

Key words: forensic pathology, artificial intelligence (AI), multimodal, data fusion

中图分类号: