主管:中华人民共和国司法部
主办:司法鉴定科学研究院
ISSN 1671-2072  CN 31-1863/N

Chinese Journal of Forensic Sciences ›› 2024 ›› Issue (3): 32-40.DOI: 10.3969/j.issn.1671-2072.2024.03.005

• Special Topic Discussion:New Quality Productive Forces in the Field of Forensic Appraisal • Previous Articles     Next Articles

Status of Forensic Microbiology Research Based on Machine Learning

ZHANG Liwei1,2,WANG Tian1,2,YU Daijing1,2,ZHANG Jun1,2,YAN Jiangwei1,2   

  1. 1. School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China; 2. Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, China
  • Received:2024-04-09 Published:2024-05-15 Online:2024-05-16

基于机器学习的法医微生物研究现状

张立为1,2,王  甜1,2,余代静1,2,张  君1,2,严江伟1,2   

  1. 1.山西医科大学 法医学院,山西 太原 030001;2.山西省法医学重点实验室,山西 晋中 030600
  • 通讯作者: 严江伟(1974—),男,教授,博士,博士研究生导师,主要从事法医遗传学研究。E-mail:yanjw@sxmu.edu.cn 张君(1988—),男,副教授,博士,硕士研究生导师,主要从事法医物证学研究。E-mail:zhangjun2537@foxmail.com
  • 作者简介:张立为(1998—),男,硕士研究生,主要从事法医物证学研究。E-mail:815099902@qq.com
  • 基金资助:
    国家自然科学基金项目(82030058,82101977)。

Abstract:  Microorganisms are widely present in nature and in human body. Their diverse community distribution provides new possibilities for solving forensic science challenges. As one of the main tools in artificial intelligence,machine learning plays a crucial role in data identification,processing and analysis,providing new ideas and methods for forensic microbiology research. This paper introduces various machine learning(ML) algorithms and related models,including supervised learning,unsupervised learning and deep learning,which have been widely used in recent forensic microbiology studies,and summarizes relevant studies on individual identification,postmortem interval inference,geographic location traceability. In addition,this paper systematically analyses challenges faced by machine learning algorithms in standardization,database establishment and evidence interpretation in forensic microbiology research,and discusses its application in forensic microbiology.

Key words: forensic science, microbiology, artificial intelligence(AI), machine learning(ML) algorithm

摘要: 微生物广泛存在于自然界和人体,其群落分布差异性为解决法医学相关问题提供了很多新的可能性。作为实现人工智能的主要方法之一,机器学习拥有强大的识别、处理和分析数据能力,为法医微生物研究提供了新思路和新方法。通过介绍近年来在法医微生物研究中使用较多的无监督学习、监督学习和深度学习等机器学习算法,并对其在个体识别、死亡时间推断、地理位置溯源等领域的探索性研究进行总结。此外,还系统剖析了机器学习算法在法医微生物研究中标准化流程、数据库建立和证据解释等方面存在的问题,并对其在法医微生物中的应用进行展望。

关键词: 法医学, 微生物, 人工智能, 机器学习算法

CLC Number: