中国司法鉴定 ›› 2025 ›› Issue (2): 20-30.DOI: 10.3969/j.issn.1671-2072.2025.02.003
严 慧1,陆佳玥1,2, 沈 敏1
收稿日期:
2024-06-12
出版日期:
2025-03-15
发布日期:
2025-03-25
作者简介:
严慧(1984—),女,研究员,博士,主要从事法医毒物学研究。E-mail:yanh501@163.com
基金资助:
YAN Hui1, LU Jiayue1,2, SHEN Min1
Received:
2024-06-12
Published:
2025-03-15
Online:
2025-03-25
摘要: 对近十年国际法医毒物学领域的整体发展趋势进行文献计量分析,考察了学术生产力较高、学术影响力较大的作者、机构、国家,绘制了各主体之间的学术合作网络。对题录中所有名词短语通过共现分析工具进行聚类分析,生成基于聚类关系的研究热点主题词。计算名词短语之间的共现系数表明,不同毒物(毒品)的研究重心有所不同。例如合成卡西酮类物质的研究较关注稳定性问题,而合成阿片类物质的研究则更关注过量致死与死后分布问题。根据研究热点主题词,聚焦于新精神活性物质、毛发分析、干基质斑技术和质谱分析技术四个研究方向,结合科研实践挖掘这些领域取得的研究进展与未来路径。
中图分类号:
严 慧, 陆佳玥, 沈 敏. 基于文献计量学的法医毒物学国际研究热点分析[J]. 中国司法鉴定, 2025(2): 20-30.
YAN Hui, LU Jiayue, SHEN Min. Analysis of International Research Hotspots in Forensic Toxicology Based on Bibliometrics[J]. Chinese Journal of Forensic Sciences, 2025(2): 20-30.
[ 1 ] JONES A W. Crème de la crème in forensic science and legal medicine[J].International Journal of Legal Medicine,2005,119(2):59-65. [ 2 ] FERRARA S D,BAJANOWSKI T,CECCHI R,et al. Bio-medicolegal scientific research in Europe:A comprehensive bibliometric overview[J]. International Journal of Legal Medicine,2011,125(3):393-402. [ 3 ] 严慧,史格非,沈敏. 基于文献计量学指标的法医毒物学研究状况分析[J]. 中国司法鉴定,2019(4):29-37. [ 4 ] ARIA M,CUCCURULLO C. Bibliometrix:An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics,2017,11(4):959-975. [ 5 ] CHEN C,IBEKWE‐SANJUAN F,HOU J. The structure and dynamics of cocitation clusters:A multiple-perspective cocitation analysis[J]. Journal of the American Society for Information Science and Technology,2010,61(7):1386-1409. [ 6 ] BOSCOLO-BERTO R,VIEL G,CECCHI R,et al. Journals publishing bio-medicolegal research in Europe[J].International Journal of Legal Medicine,2012,126(1):129-137. [ 7 ] VIEL G,BOSCOLO-BERTO R,CECCHI R,et al. Bio-medicolegal scientific research in Europe. A country-based analysis[J]. International Journal of Legal Medicine,2011,125(5):717-725. [ 8 ] BADE R,WHITE J M,CHEN J,et al. International snapshot of new psychoactive substance use:Case study of eight countries over the 2019/2020 new year period[J]. Water Research,2021,193:116891. [ 9 ] COLLINS M. Some new psychoactive substances:Precursor chemicals and synthesis‐driven end‐products[J]. Drug Testing and Analysis,2011,3(7/8):404-416. [10] DIAO X,SCHEIDWEILER K B,WOHLFARTH A,et al. Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201:Metabolism of FUBIMINA in human hepatocytes[J]. Forensic Toxicology,2016,34(2):256-267. [11] MAAS A,SYDOW K,MADEA B,et al. Separation of ortho,meta and para isomers of methylmethcathinone (MMC) and methylethcathinone (MEC) using LC-ESI-MS/MS:Application to forensic serum samples[J]. Journal of Chromatography B,2017,1051:118-125. [12] MAHER S,ELLIOTT S P,GEORGE S. The analytical challenges of cyclopropylfentanyl and crotonylfentanyl:An approach for toxicological analysis[J]. Drug Testing and Analysis,2018,10(9):1483-1487. [13] MOSTOWTT T,MCCORD B. Surface enhanced Raman spectroscopy (SERS) as a method for the toxicological analysis of synthetic cannabinoids[J].Talanta,2017,164:396-402. [14] KUŚ P,KUSZ J,KSIĄŻEK M,et al. Spectroscopic characterization and crystal structures of two cathinone derivatives:N-ethyl-2-amino-1-phenylpropan-1-one (ethcathinone) hydrochloride and N-ethyl-2-amino-1-(4-chlorophenyl)propan-1-one (4-CEC) hydrochloride[J]. Forensic Toxicology,2017,35(1):114-124. [15] SPÁLOVSKÁ D,MAŘÍKOVÁ T,KOHOUT M,et al. Methylone and pentylone:Structural analysis of new psychoactive substances[J]. Forensic Toxicology,2019,37(2):366-377. [16] CASTANETO M S,WOHLFARTH A,PANG S,et al. Identification of AB-FUBINACA metabolites in human hepatocytes and urine using high-resolution mass spectrometry[J]. Forensic Toxicology,2015,33(2):295-310. [17] SWORTWOOD M J,ELLEFSEN K N,WOHLFARTH A,et al. First metabolic profile of PV8,a novel synthetic cathinone,in human hepatocytes and urine by high-resolution mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2016,408(18):4845-4856. [18] ÅSTRAND A,TÖRESKOG A,WATANABE S,et al. Correlations between metabolism and structural elements of the alicyclic fentanyl analogs cyclopropyl fentanyl,cyclobutyl fentanyl,cyclopentyl fentanyl,cyclohexyl fentanyl and 2,2,3,3-tetramethylcyclopropyl fentanyl studied by human hepatocytes and LC-QTOF-MS[J]. Archives of Toxicology,2019,93(1):95-106. [19] MCKENZIE C,SUTCLIFFE O B,READ K D,et al. Chemical synthesis,characterisation and in vitro and in vivo metabolism of the synthetic opioid MT-45 and its newly identified fluorinated analogue 2F-MT-45 with metabolite confirmation in urine samples from known drug users[J]. Forensic Toxicology,2018,36(2):359-374. [20] WATANABE S,VIKINGSSON S,ÅSTRAND A,et al. Metabolism of the benzodiazepines norflurazepam,flurazepam,fludiazepam and cinolazepam by human hepatocytes using high-resolution mass spectrometry and distinguishing their intake in authentic urine samples[J]. Forensic Toxicology,2020,38(1):79-94. [21] MINAKATA K,YAMAGISHI I,HASEGAWA K,et al. In vitro and in vivo human metabolism of a synthetic cannabinoid EAM-2201 detected by LC-quadrupole-ion trap-MS/MS and high-resolution LC-Orbitrap-MS/MS[J]. Forensic Toxicology,2019,37(2):432-442. [22] WATANABE S,IWAI T,MATSUSHITA R,et al. Comparison between human liver microsomes and the fungus Cunninghamella elegans for biotransformation of the synthetic cannabinoid JWH-424 having a bromo-naphthyl moiety analysed by high-resolution mass spectrometry[J]. Forensic Toxicology,2022,40(2):278-288. [23] WATANABE S,KUZHIUMPARAMBIL U,WINIARSKI Z, et al. Biotransformation of synthetic cannabinoids JWH-018,JWH-073 and AM2201 by Cunninghamella elegans[J]. Forensic Science International,2016,261:33-42. [24] LEONG H S,WATANABE S,KUZHIUMPARAMBIL U,et al. Monitoring metabolism of synthetic cannabinoid 4F-MDMB-BINACA via high-resolution mass spectrometry assessed in cultured hepatoma cell line,fungus,liver microsomes and confirmed using urine samples[J]. Forensic Toxicology,2021,39(1):198-212. [25] DAHM P,THOMAS A,ROTHSCHILD M A,et al. Phase I-metabolism studies of the synthetic cannabinoids PX-1 and PX-2 using three different in vitro models[J]. Forensic Toxicology,2022,40(2):244-262. [26] WAGMANN L,FRANKENFELD F,PARK Y M,et al. How to study the metabolism of new psychoactive substances for the purpose of toxicological screenings—a follow-up study comparing pooled human liver S9,HepaRG cells,and zebrafish larvae[J]. Frontiers in Chemistry,2020,8:539. [27] RICHTER L H J,BECK A,FLOCKERZI V,et al. Cytotoxicity of new psychoactive substances and other drugs of abuse studied in human HepG2 cells using an adopted high content screening assay[J]. Toxicology Letters,2019,301:79-89. [28] RICHTER L H J,FLOCKERZI V,MAURER H H,et al. Pooled human liver preparations,HepaRG,or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA,MDBD,butylone,MDPPP,MDPV,MDPB,5-MAPB,and 5-API as examples[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,143:32-42. [29] NIELSEN L,LINNET K,OLSEN L,et al. Prediction of cytochrome P450 mediated metabolism of designer drugs[J]. Current Topics in Medicinal Chemistry,2014,14(11):1365-1373. [30] DIAO X,WOHLFARTH A,PANG S,et al. High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes[J]. Clinical Chemistry,2016,62(1):157-169. [31] STRANO-ROSSI S,ANZILLOTTI L,DRAGONI S,et al. Metabolism of JWH-015,JWH-098,JWH-251,and JWH-307 in silico and in vitro:A pilot study for the detection of unknown synthetic cannabinoids metabolites[J]. Analytical and Bioanalytical Chemistry,2014,406(15):3621-3636. [32] MONTESANO C,VANNUTELLI G,FANTI F,et al. Identification of MT-45 metabolites:in silico prediction,in vitro incubation with rat hepatocytes and in vivo confirmation[J]. Journal of Analytical Toxicology,2017,41(8):688-697. [33] ELLEFSEN K N,WOHLFARTH A,SWORTWOOD M J,et al. 4-Methoxy-α-PVP:In silico prediction,metabolic stability,and metabolite identification by human hepatocyte incubation and high-resolution mass spectrometry[J]. Forensic Toxicology,2016,34(1):61-75. [34] BRUNETTI P,LO FARO A F,DI TRANA A,et al. β′-Phenylfentanyl metabolism in primary human hepatocyte incubations:identification of potential biomarkers of exposure in clinical and forensic toxicology[J]. Journal of Analytical Toxicology,2023,46(9):e207-e217. [35] KINTZ P. Value of the concept of minimal detectable dosage in human hair[J]. Forensic Science International,2012,218(1-3):28-30. [36] KUWAYAMA K,MIYAGUCHI H,KANAMORI T,et al. Micro-segmental hair analysis:Detailed procedures and applications in forensic toxicology[J]. Forensic Toxicology,2022,40(2):215-233. [37] KUWAYAMA K,MIYAGUCHI H,IWATA Y T,et al. Three-step drug extraction from a single sub-millimeter segment of hair and nail to determine the exact day of drug intake[J]. Analytica Chimica Acta,2016,948:40-47. [38] KUWAYAMA K,MIYAGUCHI H,KANAMORI T,et al. Distribution profiles of diphenhydramine and lidocaine in scalp,axillary,and pubic hairs measured by micro-segmental hair analysis:Good indicator for discrimination between administration and external contamination of the drugs[J]. Forensic Toxicology,2022,40(1):64-74. [39] KUWAYAMA K,MIYAGUCHI H,IWATA Y T,et al. Strong evidence of drug-facilitated crimes by hair analysis using LC-MS/MS after micro-segmentation[J]. Forensic Toxicology,2019,37(2):480-487. [40] XU D,JI J,XIANG P,et al. Two DFSA cases involving midazolam clarified by the micro-segmental hair analyses[J]. Forensic Toxicology,2022,40(2):374-382. [41] LIN H,ZENG X,WANG Q,et al. Identification and imaging of indole-3-carboxamide cannabinoids in hair using matrix-assisted laser-desorption/ionization mass spectrometry[J]. Forensic Toxicology,2020,38(1):216-226. [42] WANG H,WANG Y,WANG G,et al. Matrix-assisted laser-desorption/ionization mass spectrometric imaging of olanzapine in a single hair using esculetin as a matrix[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,141:123-131. [43] NAKANISHI T,NIRASAWA T,TAKUBO T. Quantitative mass barcode-like image of nicotine in single longitudinally sliced hair sections from long-term smokers by matrix-assisted laser desorption time-of-flight mass spectrometry imaging[J]. Journal of Analytical Toxicology,2014,38(6):349-353. [44] SHIMA N,SASAKI K,KAMATA T,et al. Single-hair analysis of zolpidem on the supposition of its single administration in drug-facilitated crimes[J]. Forensic Toxicology,2015,33(1):122-130. [45] FLINDERS B,CUYPERS E,ZEIJLEMAKER H,et al. Preparation of longitudinal sections of hair samples for the analysis of cocaine by MALDI-MS/MS and TOF-SIMS imaging[J]. Drug Testing and Analysis,2015,7(10):859-865. [46] KINTZ P. 2014 Consensus for the use of alcohol markers in hair for assessment of both abstinence and chronic excessive alcohol consumption[J]. Forensic Science International,2015,249:A1-A2. [47] TRIOLO V,SPANÒ M,BUSCEMI R,et al. EtG quantification in hair and different reference cut-offs in relation to various pathologies:a scoping review[J]. Toxics,2022,10(11):682. [48] BINZ T M,BAUMGARTNER M R,KRAEMER T. The influence of cleansing shampoos on ethyl glucuronide concentration in hair analyzed with an optimized and validated LC-MS/MS method[J]. Forensic Science International,2014,244:20-24. [49] PETZEL‐WITT S,POGODA W,WUNDER C,et al. Influence of bleaching and coloring on ethyl glucuronide content in human hair[J]. Drug Testing and Analysis,2018,10(1):177-183. [50] LUGINBÜHL M,NUSSBAUMER S,WEINMANN W. Decrease of ethyl glucuronide concentrations in hair after exposure to chlorinated swimming pool water[J]. Drug Testing and Analysis,2018,10(4):689-693. [51] MIOLO G,STOCCHERO G,VOGLIARDI S,et al. A study on photostability of ethyl glucuronide in hair irradiated under artificial sunlight[J]. Journal of Analytical Toxicology,2020,44(1):58-64. [52] TSANACLIS L,BAGLEY K,BEVAN S,et al. The effect of prolonged storage time on the stability of fatty acid ethyl esters in hair samples[J]. Journal of Analytical Toxicology,2020,44(8):829-833. [53] EISENBEISS L,BINZ T M,BAUMGARTNER M R,et al. A possible new oxidation marker for hair adulteration:Detection of PTeCA (1H‐pyrrole‐2,3,4,5‐tetracarboxylic acid) in bleached hair[J]. Drug Testing and Analysis,2020,12(2):230-238. [54] MUELLER A,JUNGEN H,IWERSEN-BERGMANN S,et al. Determination of ethyl glucuronide in human hair samples:A multivariate analysis of the impact of extraction conditions on quantitative results[J]. Forensic Science International,2017,271:43-48. [55] KINTZ P,AMELINE A,RAUL J. Human hair tests to document drug environmental contamination:Application in a family law case involving N,N‐dimethyltryptamine[J]. Drug Testing and Analysis,2021,13(2):447-450. [56] FAVRETTO D,VOGLIARDI S,TUCCI M,et al. Occupational exposure to ketamine detected by hair analysis:A retrospective and prospective toxicological study[J].Forensic Science International,2016,265:193-199. [57] JACQUES A L B,SANTOS M K,GORZIZA R P,et al. Dried matrix spots:An evolving trend in the toxicological field[J].Forensic Science,Medicine and Pathology,2022,18(1):86-102. [58] AMBACH L,HERNÁNDEZ REDONDO A,KÖNIG S,et al. Rapid and simple LC‐MS/MS screening of 64 novel psychoactive substances using dried blood spots[J]. Drug Testing and Analysis,2014,6(4):367-375. [59] DA CUNHA K F,EBERLIN M N,COSTA J L. Development and validation of a sensitive LC-MS/MS method to analyze NBOMes in dried blood spots:Evaluation of long-term stability[J]. Forensic Toxicology,2018,36(1):113-121. [60] DA CUNHA K F,EBERLIN M N,COSTA J L. Long-term stability of synthetic cathinones in dried blood spots and whole blood samples:A comparative study[J].Forensic Toxicology,2018,36(2):424-434. [61] KUMMER N,INGELS A-S,WILLE S M R,et al. Quantification of phosphatidylethanol 16∶0/18∶1,18∶1/18∶1,and 16∶0/16∶0 in venous blood and venous and capillary dried blood spots from patients in alcohol withdrawal and control volunteers[J].Analytical and Bioanalytical Chemistry,2016,408(3):825-838. [62] VELGHE S,DELAHAYE L,STOVE C P. Is the hematocrit still an issue in quantitative dried blood spot analysis?[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,163:188-196. [63] Clinical and Laboratory Standards Institute. NBS01| Dried blood spot specimen collection for newborn screening[EB/OL].[2024-03-27].https://clsi.org/standards/products/newborn-screening/documents/nbs01/. [64] With dried blood spot analysis,anti-doping science is pushing the boundaries at Beijing 2022 and beyond[EB/OL]. [2024-03-27].https://www.wada-ama.org/en/news/dried-blood-spot-analysis-anti-doping-science-pushing-boundaries-beijing-2022-and-beyond. [65] LUGINBÜHL M,STÖTH F,SCHRÖCK A,et al. Quantitative determination of phosphatidylethanol in dried blood spots for monitoring alcohol abstinence[J]. Nature Protocols,2021,16(1):283-308. [66] MAURER H H. What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening?[J]. Journal of Chromatography A,2013,1292:19-24. [67] GONCALVES R,PELLETIER R,COUETTE A,et al. Suitability of high-resolution mass spectrometry in analytical toxicology:Focus on drugs of abuse[J].Toxicologie Analytique et Clinique,2022,34(1):29-41. [68] HOPFGARTNER G,TONOLI D,VARESIO E. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices[J]. Analytical and Bioanalytical Chemistry,2012,402(8):2587-2596. [69] WHITMAN J D,LYNCH K L. Optimization and comparison of information-dependent acquisition (IDA) to sequential window acquisition of all theoretical fragment ion spectra (SWATH) for high-resolution mass spectrometry in clinical toxicology[J]. Clinical Chemistry,2019,65(7):862-870. [70] ÁLVAREZ-RUIZ R,PICÓ Y. Sequential window acquisition of all theoretical fragments versus information dependent acquisition for suspected-screening of pharmaceuticals in sediments and mussels by ultra-high pressure liquid chromatography-quadrupole time-of-flight-mass spectrometry[J]. Journal of Chromatography A,2019,1595:81-90. [71] ROEMMELT A T,STEUER A E,POETZSCH M,et al. Liquid chromatography,in combination with a quadrupole time-of-flight instrument (LC QTOF),with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition:Systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA)[J]. Analytical Chemistry,2014,86(23):11742-11749. [72] BOXLER M I,SCHNEIDER T D,KRAEMER T,et al. Analytical considerations for (un)‐targeted metabolomic studies with special focus on forensic applications[J]. Drug Testing and Analysis,2019,11(5):678-696. [73] LE DARÉ B,ALLARD S,COUETTE A,et al. Comparison of illicit drug seizures products of natural origin using a molecular networking approach[J]. International Journal of Toxicology,2022,41(2):108-114. [74] STREUN G L,ELMIGER M P,DOBAY A,et al. A machine learning approach for handling big data produced by high resolution mass spectrometry after data independent acquisition of small molecules—Proof of concept study using an artificial neural network for sample classification[J]. Drug Testing and Analysis,2020,12(6):836-845. [75] STREUN G L,STEUER A E,POETZSCH S N,et al. Towards a new qualitative screening assay for synthetic cannabinoids using metabolomics and machine learning[J]. Clinical Chemistry,2022,68(6):848-855. |
[1] | 钱小雨, 向 平, 严 慧. 代谢组学在新精神活性物质研究中的应用[J]. 中国司法鉴定, 2025, 0(2): 31-39. |
[2] | 沈瑞迪, 钱振华. 尼秦类新精神活性物质及其检验方法研究进展[J]. 中国司法鉴定, 2024, 0(4): 21-28. |
[3] | 王 鑫, 陈 航, 向 平. 向毒而战 ——2023年国际法医毒物学家协会(TIAFT)第60届年会会议综述[J]. 中国司法鉴定, 2024, 0(1): 36-41. |
[4] | 徐 峰, 宣 宇, 卓晓聪, 富利祥, 陈 峰, 王斌杰, 郭狄飞, 余鹏飞. 超高效液相色谱-串联质谱法同时测定人血中12种抗抑郁药[J]. 中国司法鉴定, 2024, 0(1): 53-60. |
[5] | 黄玉敏, 潘 彤, 刘清波, 孙 茂, 孙鹏飞, 吴元明. 气相色谱-质谱法测定涉案奶粉中辛硫磷的含量[J]. 中国司法鉴定, 2023, 0(6): 75-79. |
[6] | 沈 敏, 严 慧, 徐多麒, 纪佼佼. 毛发分析前沿——头发微样技术研究进展[J]. 中国司法鉴定, 2023, 0(5): 22-30. |
[7] | 武丽娜, 肖 辅, 林佳曼, 李天乐, 向 平, 施 妍, 贠克明. 新精神活性物质定量构效关系方法研究及应用[J]. 中国司法鉴定, 2023, 0(1): 45-52. |
[8] | 郑嘉明, 王 鑫, 赵云丽, 向 平. 毛发中合成大麻素类新精神活性物质分析研究进展[J]. 中国司法鉴定, 2023, 0(1): 53-62. |
[9] | 陆佳玥, 严 慧, 陈 航, 沈 敏. 我国法医毒物学领域新精神活性物质研究现状——基于文献计量学分析[J]. 中国司法鉴定, 2022, 0(6): 37-47. |
[10] | 任 航, 赵云丽, 原 帅, 向 平, 沈保华. 基于污水流行病学的全球毒品流行趋势[J]. 中国司法鉴定, 2022, 0(5): 22-38. |
[11] | 翟文娅, 向 平, 乔 正, 党永辉, 施 妍. 苯乙胺类新精神活性物质及其代谢研究进展[J]. 中国司法鉴定, 2022, 0(3): 24-35. |
[12] | 杨 欢, 王 鑫, 于 淼, 向 平. 毛发中食欲抑制剂分析方法研究进展 [J]. 中国司法鉴定, 2021, 0(6): 43-52. |
[13] | 蒋诗佳, 严 慧, 沈 敏. 纸喷雾质谱技术在法医毒物学领域的应用 [J]. 中国司法鉴定, 2021, 0(5): 65-74. |
[14] | 刘梦曦, 向 平, 于治国, 等. 合成大麻素类新精神活性物质研究进展 [J]. 中国司法鉴定, 2021, 0(4): 30-40. |
[15] | 屈国强, 杨智曦, 梁 曼, 等. 环境损害司法鉴定研究热点——基于科学知识图谱的文献分析 [J]. 中国司法鉴定, 2021, 0(4): 93-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||